Selective Bypass of a Lagging Strand Roadblock by the Eukaryotic Replicative DNA Helicase

نویسندگان

  • Yu V. Fu
  • Hasan Yardimci
  • David T. Long
  • Angelo Guainazzi
  • Vladimir P. Bermudez
  • Jerard Hurwitz
  • Antoine van Oijen
  • Orlando D. Schärer
  • Johannes C. Walter
چکیده

The eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3' to 5' ssDNA translocase, consistent with unwinding via "steric exclusion." Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mcm10 promotes rapid isomerization of CMG-DNA for replisome bypass of lagging strand DNA blocks

Replicative helicases in all cell types are hexameric rings that unwind DNA by steric exclusion in which the helicase encircles the tracking strand only and excludes the other strand from the ring. This mode of translocation allows helicases to bypass blocks on the strand that is excluded from the central channel. Unlike other replicative helicases, eukaryotic CMG helicase partially encircles d...

متن کامل

Establishing the human rolling circle reaction

In eukaryotes, the complex comprised of Mcm2–7, Cdc45 and GINS (CMG) is essential for DNA replication. Several lines of evidence indicate that the Mcm2–7 complex is the motor of the replicative helicase (reviewed in ref. 1), which is activated by its association with Cdc45 and GINS. Recently, we described the isolation and characterization of the human (h) CMG complex. In HeLa cells, this compl...

متن کامل

Mcm10 functions to isomerize CMG-DNA for replisome bypass of DNA blocks

1 2 Replicative helicases of all cell types are rings that unwind DNA by steric exclusion in which 3 the helicase ring only encircles the tracking strand, excluding the other strand outside the 4 ring. Steric exclusion mediated unwinding enables helicase rings to bypass blocks on the 5 strand that is excluded from the central channel. Unlike other replicative helicases, 6 eukaryotic CMG encircl...

متن کامل

How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication

The eukaryotic replisome is a molecular machine that coordinates the Cdc45-MCM-GINS (CMG) replicative DNA helicase with DNA polymerases α, δ, and ε and other proteins to copy the leading- and lagging-strand templates at rates between 1 and 2 kb min-1. We have now reconstituted this sophisticated machine with purified proteins, beginning with regulated CMG assembly and activation. We show that r...

متن کامل

Functional interplay of DnaE polymerase, DnaG primase and DnaC helicase within a ternary complex, and primase to polymerase hand-off during lagging strand DNA replication in Bacillus subtilis

Bacillus subtilis has two replicative DNA polymerases. PolC is a processive high-fidelity replicative polymerase, while the error-prone DnaEBs extends RNA primers before hand-off to PolC at the lagging strand. We show that DnaEBs interacts with the replicative helicase DnaC and primase DnaG in a ternary complex. We characterize their activities and analyse the functional significance of their i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cell

دوره 146  شماره 

صفحات  -

تاریخ انتشار 2011